Show simple item record

dc.contributor.authorRuan, W
dc.contributor.authorWu, M
dc.contributor.authorSun, Y
dc.contributor.authorHuang, X
dc.contributor.authorKroening, D
dc.contributor.authorKwiatkowska, M
dc.date.accessioned2020-08-04T10:01:30Z
dc.date.issued2019-08-16
dc.description.abstractDeployment of deep neural networks (DNNs) in safety-critical systems requires provable guarantees for their correct behaviours. We compute the maximal radius of a safe norm ball around a given input, within which there are no adversarial examples for a trained DNN. We define global robustness as an expectation of the maximal safe radius over a test dataset, and develop an algorithm to approximate the global robustness measure by iteratively computing its lower and upper bounds. Our algorithm is the first efficient method for the Hamming (L0) distance, and we hypothesise that this norm is a good proxy for a certain class of physical attacks. The algorithm is anytime, i.e., it returns intermediate bounds and robustness estimates that are gradually, but strictly, improved as the computation proceeds; tensor-based, i.e., the computation is conducted over a set of inputs simultaneously to enable efficient GPU computation; and has provable guarantees, i.e., both the bounds and the robustness estimates can converge to their optimal values. Finally, we demonstrate the utility of our approach by applying the algorithm to a set of challenging problems.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationProceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), 10-16 August 2019, Macau, China, pp. 5944-5952.en_GB
dc.identifier.doi10.24963/ijcai.2019/824
dc.identifier.grantnumberEP/M019918/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/122299
dc.language.isoenen_GB
dc.publisherIJCAIen_GB
dc.rights© 2019 International Joint Conferences on Artificial Intelligence. All right reserved.en_GB
dc.titleGlobal robustness evaluation of deep neural networks with provable guarantees for the hamming distanceen_GB
dc.typeConference paperen_GB
dc.date.available2020-08-04T10:01:30Z
dc.identifier.isbn9780999241141
dc.identifier.issn1045-0823
dc.descriptionThis is the final version. Available from IJCAI via the DOI in this recorden_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-05-09
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2019-08-16
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2020-08-04T09:58:04Z
refterms.versionFCDVoR
refterms.dateFOA2020-08-04T10:01:41Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record