Show simple item record

dc.contributor.authorCunliffe, AM
dc.contributor.authorBoschetti, F
dc.contributor.authorClement, R
dc.contributor.authorSitch, S
dc.contributor.authorAnderson, K
dc.contributor.authorDuman, T
dc.contributor.authorZhu, S
dc.contributor.authorSchlumpf, M
dc.contributor.authorLitvak, ME
dc.contributor.authorBrazier, RE
dc.contributor.authorHill, TC
dc.date.accessioned2022-09-08T12:05:44Z
dc.date.issued2022-08-02
dc.date.updated2022-09-08T10:21:34Z
dc.description.abstractThe eddy covariance method is widely used to investigate fluxes of energy, water, and carbon dioxide at landscape scales, providing important information on how ecological systems function. Flux measurements quantify ecosystem responses to environmental perturbations and management strategies, including nature-based climate-change mitigation measures. However, due to the high cost of conventional instrumentation, most eddy covariance studies employ a single system, limiting spatial representation to the flux footprint. Insufficient replication may be limiting our understanding of ecosystem behavior. To address this limitation, we deployed eight lower-cost eddy covariance systems in two clusters around two conventional eddy covariance systems in the Chihuahuan Desert of North America for a period of 2 years. These dryland settings characterized by large temperature variations and relatively low carbon dioxide fluxes represented a challenging setting for eddy covariance. We found very good closure of energy and water balance across all systems (within ±9% of unity). We found very good correspondence between the lower-cost and conventional systems' fluxes of sensible heat (with concordance correlation coefficient (CCC) of ≥0.87), latent energy (evapotranspiration; CCC ≥ 0.89), and useful correspondence in the net ecosystem exchange ((NEE); with CCC ≥ 0.4) at the daily temporal resolution. Relative to the conventional systems, the low-frequency systems were characterized by a higher level of random error, particularly in the NEE fluxes. Lower-cost systems can enable wider deployment affording better replication and sampling of spatiotemporal variability at the expense of greater measurement noise that might be limiting for certain applications. Replicated eddy covariance observations may be useful when addressing gaps in the existing monitoring of critical and underrepresented ecosystems and for measuring areas larger than a single flux footprint.en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipNational Science Foundation (NSF)en_GB
dc.description.sponsorshipDepartment of Energyen_GB
dc.description.sponsorshipOppenheimer Programme in African Landscape Systemsen_GB
dc.identifier.citationVol. 127(8), article e2021JG006240en_GB
dc.identifier.doihttps://doi.org/10.1029/2021jg006240
dc.identifier.grantnumberNE/R00062X/1en_GB
dc.identifier.grantnumberDEB/1655499en_GB
dc.identifier.grantnumber7551832en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130747
dc.identifierORCID: 0000-0002-8346-4278 (Cunliffe, Andrew M)
dc.identifierORCID: 0000-0003-1821-8561 (Sitch, Stephen)
dc.identifierScopusID: 6603113016 (Sitch, Stephen)
dc.identifierResearcherID: F-8034-2015 (Sitch, Stephen)
dc.identifierORCID: 0000-0002-3289-2598 | 0000-0003-3695-209X (Anderson, Karen)
dc.identifierScopusID: 55455157700 (Anderson, Karen)
dc.identifierResearcherID: ABC-3524-2021 (Anderson, Karen)
dc.identifierORCID: 0000-0002-8715-0399 (Brazier, Richard E)
dc.identifierORCID: 0000-0002-1740-930X (Hill, Timothy C)
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union (AGU) / Wileyen_GB
dc.relation.urlhttps://ameriflux.lbl.gov/login/?redirect_to=/data/download-data/en_GB
dc.relation.urlhttps://doi.org/10.5285/e96466c3-5b67-41b0-9252-8f8f393807d7en_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.4730586en_GB
dc.rights© 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_GB
dc.titleStrong Correspondence in Evapotranspiration and Carbon Dioxide Fluxes Between Different Eddy Covariance Systems Enables Quantification of Landscape Heterogeneity in Dryland Fluxesen_GB
dc.typeArticleen_GB
dc.date.available2022-09-08T12:05:44Z
dc.identifier.issn2169-8953
exeter.article-numberARTN e2021JG006240
dc.descriptionThis is the final version. Available on open access from Wiley via the DOI in this recorden_GB
dc.descriptionData Availability Statement: Post-processed half-hourly data from AmeriFlux systems are available at https://ameriflux.lbl.gov/login/?redirect_to=/data/download-data/ and the data from the low-frequency systems are archived with the NERC Environmental Information Data Centre (https://doi.org/10.5285/e96466c3-5b67-41b0-9252-8f8f393807d7). The code repository is archived on Zenodo (https://doi.org/10.5281/zenodo.4730586).en_GB
dc.identifier.eissn2169-8961
dc.identifier.journalJournal of Geophysical Research Biogeosciencesen_GB
dc.relation.ispartofJournal of Geophysical Research Biogeosciences, 127(8)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-07-14
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-08-02
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-09-08T12:01:30Z
refterms.versionFCDVoR
refterms.dateFOA2022-09-08T12:06:01Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-08-02


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's licence is described as © 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.